Contents

Preface
Intended Audience .. iii
Text Conventions ... iii
Documentation Location and Feedback iv
Contact Technical Support iv

Chapter 1: Getting Started with Cable Broadband Solution
Network Management Factors 1
Vendor MIB Support 3
SPECTRUM Device Support 4
CMTS Models ... 5
 CMTS Model Device Support 5
 CMTS Model DOCSIS Support 5
 CMTS Fault Isolation, Polling, and Logging 5
Lightweight Models 5
 Lightweight Model Device Support 5
 Lightweight Model Fault Isolation 6
 Lightweight Model Polling and Logging 6
 Lightweight Model DOCSIS Support 6
Broadband Service Container Models 6
 Standard Container Characteristics 6
 Broadband Service Container Characteristics 7
HFC Device Event Modeling 7
DOCSIS MIB Support 8

Chapter 2: Broadband Service Container Model
Create a Broadband Service Container Model 9
Modeling Devices .. 10
General Information Subview 10
 Significance Levels 11
 Rollup Thresholds 12

Index
Preface

Welcome to the *Cable Broadband Infrastructure Administration Guide (5098).*

Intended Audience

This guide is intended for SPECTRUM administrators who are responsible for the daily administration and management of SPECTRUM with specific devices. The guide provides information on modeling devices and addresses performance problems and guidelines for device configuration.

Text Conventions

The following text conventions are used in this guide:

<table>
<thead>
<tr>
<th>Element</th>
<th>Convention Used</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>Italic in angle brackets (<>)</td>
<td>Type the following: DISPLAY=<workstation name>:0.0 export display</td>
</tr>
<tr>
<td>(The user supplies a value for the variable.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>The directory where you installed SPECTRUM</td>
<td><$SPECROOT></td>
<td>Navigate to:</td>
</tr>
<tr>
<td>(The user supplies a value for the variable.)</td>
<td></td>
<td><$SPECROOT>/app-defaults</td>
</tr>
<tr>
<td>Linux, Solaris, and Windows directory paths</td>
<td>Unless otherwise noted, directory</td>
<td><$SPECROOT>/app-defaults on Linux and Solaris is equivalent to</td>
</tr>
<tr>
<td></td>
<td>paths are common to both operating</td>
<td><$SPECROOT>\app-defaults on Windows.</td>
</tr>
<tr>
<td></td>
<td>systems, with the exception that</td>
<td></td>
</tr>
<tr>
<td></td>
<td>slashes (/) should be used in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Linux and Solaris paths, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>backslashes () should be used in</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Windows paths.</td>
<td></td>
</tr>
<tr>
<td>Element</td>
<td>Convention Used</td>
<td>Example</td>
</tr>
<tr>
<td>------------------------------</td>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>On-screen text</td>
<td>Code</td>
<td>The following line displays: path="/audit"</td>
</tr>
<tr>
<td>User-typed text</td>
<td>Bold</td>
<td>Type the following path name:</td>
</tr>
<tr>
<td>References to SPECTRUM</td>
<td>Italic</td>
<td>Installation Guide (5136)</td>
</tr>
</tbody>
</table>

Documentation Location and Feedback

Check the following site for the latest updates and additions to SPECTRUM documents:

http://ca.com/support

To send feedback regarding SPECTRUM documentation, access the following web address:

Thank you for helping us improve our documentation.

Contact Technical Support

For online technical assistance and a complete list of locations, primary service hours, and telephone numbers, contact Technical Support at the following web address:

http://ca.com/support
Chapter 1: Getting Started with Cable Broadband Solution

This section provides a starting point for users managing Cable Broadband Networks with SPECTRUM.

Network Management Factors

This section describes the elements of a broadband network and the Cable Broadband models in SPECTRUM’s Cable Broadband Solution.

For a cable broadband management system to be effective, it must meet the challenge of acquiring an array of information available from a variety of devices diversely deployed to meet the demands of many different business requirements. To be useful to managers, the acquired information must be displayed in a meaningful manner.
The following image provides an example of a simple cable broadband network deployment.

Basic Components of a Cable Broadband Network

![Diagram of cable broadband network components]

The cable broadband network includes Hybrid Fiber Coax (HFC) devices and TCP/IP devices. The HFC devices consist of Up Converters, Diplex Filters, Attenuators, Amplifiers, Splitters, and Power Supplies. The TCP/IP devices consist of DHCP servers, Cable Modem Termination Systems (CMTS), and Cable Modems (CM). The HFC components gather HFC information through proprietary communication methods. The TCP/IP devices gather network information through the Simple Network Management Protocol (SNMP).

In addition to the challenges imposed by the diversity of devices and deployments, an added complexity for network managers is the need to control SNMP traffic. Using SNMP, CMs communicate information to CMTSs over the HFC network using shared channel frequencies. The downstream frequency channel aggregates information from the CMTSs to the CMs and the upstream frequency channels aggregate information from the CMs to the CMTSs. Managers must have visibility into the amount of SNMP traffic that is generated on this shared media in order to maximize network efficiencies, plan for network growth, and have visibility into the operational status of devices for purposes of fault isolation and root cause analysis.
SPECTRUM’s cable broadband network management solution meets the challenges summarized previously by:

- Supporting devices and MIBs produced by a variety of vendors. See Vendor MIB Support on page 3 for more information.
- Limiting ICMP and SNMP traffic by introducing modeling techniques designed for cable broadband networks.
- Providing a mechanism for logically grouping device models.
- Providing a means for aggregating alarms from selected devices and setting aggregate threshold values based on mission criticality.
- Providing fault isolation and root cause analysis down to the port level.

Vendor MIB Support

Depending on the management module, vendor-specific information can be found either off the device model or in the Component Detail panel view in the form of an application. The following table lists the device-specific SPECTRUM management modules related to cable broadband devices.

<table>
<thead>
<tr>
<th>Device Type</th>
<th>Supports Management Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM Communications</td>
<td>SM-AMC1000</td>
</tr>
<tr>
<td>Arris Cadant C4 CMTS</td>
<td>SM-ARS1000</td>
</tr>
<tr>
<td>Broadband Service Containers</td>
<td>SM-BSC1000</td>
</tr>
<tr>
<td>Cheetah Gateway Integration</td>
<td>SM-SFA1000</td>
</tr>
<tr>
<td>Cisco uBR72xxCMTS</td>
<td>SM-CIS1008</td>
</tr>
<tr>
<td>DOCSIS Applications</td>
<td>SM-DCSCMN</td>
</tr>
<tr>
<td>DOCSIS Devices</td>
<td>SM-DCS1000</td>
</tr>
<tr>
<td>LANCity Cable TV Modem</td>
<td>SM-LCH1000</td>
</tr>
<tr>
<td>Motorola CDLP Cable Router</td>
<td>SM-MOT1001</td>
</tr>
<tr>
<td>RiverDelta BSR 1000/64000</td>
<td>SM-RVD1000</td>
</tr>
<tr>
<td>Riverstone SmartSwitch Router</td>
<td>SM-RST1000</td>
</tr>
<tr>
<td>Scientific Atlanta Explorer HCT</td>
<td>SM-SFA1000</td>
</tr>
<tr>
<td>Telecom CUDA 12000</td>
<td>SM-ADC1000</td>
</tr>
<tr>
<td>Terayon BroadbandEdge2000/TeraLink 1000</td>
<td>SM-TRN1000</td>
</tr>
<tr>
<td>Terayon BW3500 CMTS</td>
<td>SM-TRN1001</td>
</tr>
</tbody>
</table>
This section describes the cable broadband models and their functionality in SPECTRUM.

SPECTRUM provides efficient information gathering by limiting ICMP and SNMP traffic across the cable broadband network. This is accomplished by providing four model paradigms as follows:

- CMTS models provide the full information gathering aspects of a GnSNMPDev model type.
- Lightweight models provide focused information gathering for CMs and set-top boxes.
- Broadband Service Container models provide a method of logically grouping Lightweight models.
- HFC Device Event Modeling

Each of these models is designed to focus information gathering to meet management’s need for useful information, to eliminate distracting information, and to reduce the impact of polling on an efficiently operating cable broadband network.

The following image provides an example of how SPECTRUM OneClick displays cable broadband component detail:
CMTS Models

The following section describes SPECTRUM’s support of CMTS devices and DOCSIS-compliant devices.

CMTS Model Device Support

SPECTRUM supports a variety of CMTS devices from vendors including Cisco, Terayon, Motorola, Nortel LANCity, River Delta (acquired by Motorola), ADC, and Riverstone. The CMTS device models have standard device support including model creation for applications and interfaces, Topology and Device Interface views, interface connectivity/port resolution, Discovery, and fault isolation capabilities. These device models are based on the standard support provided by the GnSNMPDev model type.

CMTS Model DOCSIS Support

SPECTRUM also supports CMTS devices that comply with DOCSIS.

CMTS Fault Isolation, Polling, and Logging

For information about fault isolation, polling, and logging, see the *Modeling Your IT Infrastructure Administrator Guide (5167)*.

Lightweight Models

Lightweight models include CMs and set-top boxes. The lightweight model paradigm supports devices that do not require the full functionality that GnSNMPDev models provide.

Lightweight Model Device Support

SPECTRUM supports the Motorola cable modem, a DOCSIS-compliant cable modem, and the Scientific Atlanta set-top box. A cable broadband network can include thousands of these devices; therefore, the models of these devices are designed as lightweight models. The lightweight series of models provide a way to represent and collect meaningful SNMP data from all cable modems and set-top boxes while limiting the effects of polling on the network.

The implementation of the new lightweight model paradigm has many significant differences over conventional GnSNMPDev models. The lightweight models have increased model capacity on a SpectroSERVER, reduced SNMP traffic, and reduced memory and CPU usage. However, the lightweight models do not create interface models for port resolution, and do not participate in fault isolation. They only communicate SNMP to their real world counterpart, whereas a GnSNMPDev model will also try to use ICMP ping to contact the device.
Lightweight Model Fault Isolation

Because the Lightweight Model Architecture does not participate in fault isolation, there is no value from a fault isolation standpoint of connecting these models by pipes. Also, by default lightweight models do not alarm. If contact with the device via SNMP has been lost, the model will turn gray and go into a suppressed state. This is done to keep the alarm manager from being flooded with red alarms from cable or set-top models losing contact. This functionality is configurable and can be set to alarm or not to alarm.

Lightweight Model Polling and Logging

Lightweight models do not log or poll any attributes. For this reason, they keep in contact with the device at three times the polling interval. This is why lightweight models do not turn active over a polling interval. Lightweight models can only be modeled by model type; you cannot model them using Discovery or by using Model by IP.

Note: Modeling cable modems over the HFC network is not advised. Because most cable modems change IP addresses on a regular basis, there would be too much SNMP traffic generated to update cable modem models.

In the future, SPECTRUM will contain auto-population features that will create and update cable modem models from the CMTS MIB tables.

Lightweight Model DOCSIS Support

Support also includes a generic DOCSIS-compliant CM device model for those vendor devices that SPECTRUM does not support but which are DOCSIS-compliant.

Broadband Service Container Models

The broadband service container model (BbSrvContainer) provides a mechanism for the logical grouping of lightweight models. To see how the broadband service container differs from other standard containers, first consider the process used by a standard container to monitor the condition of models it collects.

Standard Container Characteristics

With standard containers, such as a Network or LAN, the container is responsible for summing the condition value of every device (or container) it collects. This sum is written to an attribute called composite condition. The composite condition is then compared to the rollup threshold values of yellow, orange, and red. The rollup thresholds are defined for minor, major, and critical severities.
For every severity state, there is a significance level that can be defined. If the composite condition exceeds a rollup threshold then the rollup condition assumes that threshold condition and color. This process for standard containers is described in detail in the *Modeling Your IT Infrastructure Administrator Guide* (5167).

Broadband Service Container Characteristics

In contrast to standard containers, the broadband service container monitors the percentage of models it has collected that have lost contact compared with the total sum of models, excluding any model still in the initial state. The percentage thresholds are defined for minor, major, and critical severities. For every severity state, there is a significance level that can be defined. However, when a threshold has been violated, the broadband service container assumes the condition associated with the threshold. The broadband service container assumes a condition to reflect the condition of the network represented by the devices grouped in the container. This is done because the alarms on the individual cable or set-top models are suppressed.

The container model’s General Information subview contains the following two attributes which determine the condition shown on the container in the Topology view: Condition Value and Lost/Unknown Child Count.

The Lost/Unknown Child Count displays the percentage of the devices collected by this container that have lost contact. The value of Lost/Unknown Child Count is compared with the rollup thresholds. If the value of Lost/Unknown Child Count exceeds a threshold, the container will set the Condition Value attribute to that criticality. The table below shows possible condition values.

Once the Condition Value of the Broadband Service Container assumes a criticality of yellow, orange, or red, the significance levels are taken into consideration by SPECTRUM. That is, the current Condition Value of the BbSrvContainer is compared with the significance level values and the significance value of the BbSrvContainer is then set, based on this comparison.

Models of cable modems and set-top boxes should never be directly connected in SPECTRUM to models of CMTS devices. To help ensure proper fault isolation for CMs and set-top boxes, the broadband service container model must be used to group models of these lightweight devices.

HFC Device Event Modeling

SPECTRUM does not model HFC devices. Most HFC devices communicate with a Headend Communications Controller (HEC). The communication protocol between the HEC and HFC devices is usually proprietary. For example, Acterna (Cheetah) and AM Communications developed a software application to communicate with their respective HECs. These software applications are capable of sending SNMP traps. SPECTRUM collects and processes these traps (sent from either software application) using SPECTRUM’s Southbound Gateway.
When an SNMP trap is sent from the software application, the Southbound Gateway analyzes the data and creates a new event model, if one has not already been created. From that point forward, traps sent from the application are mapped to that event model. The traps will be further processed and events and alarms created on the event model.

DOCSIS MIB Support

Support also includes a generic DOCSIS-compliant CMTS device for those vendor devices that SPECTRUM does not support but are DOCSIS-compliant. In the case of these devices, the CMTS models will have the DOCSIS information available in the application view as applications. There is an application for each of the DOCSIS MIBs shown in the following table that will discover automatically if the device supports the MIB.

<table>
<thead>
<tr>
<th>DOCSIS MIB Listing</th>
<th>1.0 Standard</th>
<th>1.1 Standard</th>
<th>2.0 Standard</th>
<th>Supported by SPECTRUM</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC 2669: Cable Device MIB</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RFC 2670: Radio Frequency Interface</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>RFC 3083: Baseline Privacy Interface</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Quality of Service</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Baseline Privacy Interface Plus</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Chapter 2: Broadband Service Container Model

This section describes how to model broadband network devices and access MIB attribute information from the BbSrvContainer model’s General Information subview.

Create a Broadband Service Container Model

The following procedure describes how to create a Broadband Service Container model.

Note: For more information about creating models and container models, see *Modeling Your IT Infrastructure Administrator Guide (5167)*.

To create a Broadband Service Container model

1. In the Explorer tab of the OneClick Navigation panel, select the Universe topology view where you want to add the new container.

 The selected topology view appears in the Topology tab of the Contents panel.

2. In the Topology tab of the Contents panel, click !Creates a new model by type in the Topology tab toolbar.

 The Select Model Type dialog appears.

3. Click ’BbSrvContainer’ in the Containers tab and then click OK to add the container to the Topology tab.

 The ‘Create Model of Type BbSrvContainer’ dialog appears.

4. Type a Name and Security String for the container and then click OK.

 The container is added to the Topology view and you can view details in the Component Detail panel.

Note: You can create more than one container model to separately monitor different parts of a network. A container model can be created inside other container models, and it can be copied and pasted into the topology on an
appropriate interface to provide port resolution for the broadband devices. Where and how you model containers and devices depends on your network configuration and how you want to view it in SPECTRUM.

Modeling Devices

Once the Broadband container model has been created, you can model devices in its Topology view as needed. The following procedure describes how to do so manually. For more detailed information about creating models and container models, see *Modeling Your IT Infrastructure Administrator Guide (5167)*.

To manually add device models to the Broadband Service Container

1. In the Explorer tab of the OneClick Navigation panel, select the broadband service container to which you want to add new device models. The selected topology view appears in the Topology tab of the Contents panel.

2. Click ![Creates a new model by type] (Creates a new model by type) in the Topology tab toolbar. The Select Model Type dialog appears.

3. Select the desired model type and then click OK. The 'Create Model of Type' dialog appears.

4. Complete the fields as needed and then click OK. The device model is added to the Topology view and you can view details in the Component Detail panel.

General Information Subview

From the Broadband container model’s General Information subview you can access information about the status of the model and its children, its rollup thresholds, and its significance levels. It contains the settings listed here and in the following sections.

Condition

Reflects the current contact or alarm status of the model itself.

Rollup Condition

Applies to container models; reflects the composite status of all the other models in the container, which are sometimes referred to as its children. The percentage of devices in the container that are down, excluding those devices whose models were never active.
The following table shows possible Rollup Condition values:

<table>
<thead>
<tr>
<th>Condition Value</th>
<th>Alarm Status</th>
<th>Label Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Normal</td>
<td>Green</td>
</tr>
<tr>
<td>1</td>
<td>Minor</td>
<td>Yellow</td>
</tr>
<tr>
<td>2</td>
<td>Major</td>
<td>Orange</td>
</tr>
<tr>
<td>3</td>
<td>Critical</td>
<td>Red</td>
</tr>
</tbody>
</table>

Child Count

Specifies the total number of devices in the container, which includes active, Initial Child, and Lost Child models.

Initial Child Count

Specifies the number of devices in the container whose models are in the Initial state.

Lost/Unknown Child Count

Specifies the number of devices in the container that were active but have lost contact with the network.

Significance Levels

Significance levels for the BbSrvContainer model weigh the importance of the model for each possible alarm severity the model may reach.

In the case of the BbSrvContainer model, the significance levels represent the importance of the cable modems and set-top models. When a BbSrvContainer model is collected by a parent container and the BbSrvContainer model reaches a particular alarm severity, the significance value will be used to calculate the parent container's alarm severity.

Value When Yellow

Specifies the point value of a Yellow alarm condition existing in a child towards the rollup alarm threshold value for the parent container.

Default: 1

Value When Orange

Specifies the point weight of an Orange alarm condition existing in a child towards the rollup alarm threshold value for the parent container.

Default: 3

Value When Red

The point weight of a Red alarm condition existing in a child towards the rollup alarm threshold value for the parent container.

Default: 7
Rollup Thresholds

The rollup thresholds are three read-write values that control when the BbSrvContainer model’s rollup condition icon changes color and also controls when alarms are triggered. Each of the threshold values represents the percentage of active devices in the BbSrvContainer that have gone down. When the actual percentage of devices that are down equals or exceeds a threshold value, the BbSrvContainer model’s rollup condition icon changes to the color associated with that threshold and a commensurate alarm is triggered.

Expressed mathematically, the rollup threshold value is:
Lost Child Count divided by (Child Count - Initial Child Count) x 100

In other words, models that have never been active are excluded from the percentage value.

You can set the thresholds to suit your requirements or use the default values. Recommendations for each threshold value are as follows:

Yellow Threshold
Minor alarm threshold. Specifies the minimum points needed to trigger a Yellow rollup alarm for a container. You might use this threshold to indicate a network condition that is less than optimum but does not threaten service.

Default: 50

Orange Threshold
Major alarm threshold. Specifies the minimum points needed to trigger an Orange rollup alarm for a container. You might use this threshold to indicate a network condition that should be examined before it threatens service.

Default: 70

Red Threshold
Critical alarm threshold. Specifies the minimum points needed to trigger a Red rollup alarm for a container. You might use this threshold to indicate a network condition that has a serious impact on service.

Default: 90

Note: Change threshold levels carefully; you may see an increase in generated alarms if threshold levels are set lower, or a decrease in generated alarms if levels are set higher.
Index

A
ADC Telecom CUDA 12000 • 3
Alarms • 6
AM Communications • 3
Arris Cadant C4 CMTS • 3
Attenuators • 2

B
BbSrvContainer • 6
Broadband Service Container • 3, 6, 7
Compared to Standard Containers • 7

C
Cable Broadband Models • 4
Cable Broadband Network components of • 2
Cable Modem Termination System (CMTS) • 2
Vendors of • 5
Cable Modems
 Gray (Suppressed) Condition • 6
 How to Model • 6
 Lost Contact • 6
Cheetah Gateway Integration • 3
Cisco uBR72xxCMTS • 3
Composite Condition Attribute • 6

D
Diplex Filter • 2
DOCSIS • 6, 8
 applications • 3
 devices • 3

F
Fault Isolation • 5, 6, 7

G
GnSNMPDev model type • 5
Gray (Suppressed) Condition • 6

H
Headend Communications Controller (HEC) • 7
HFC Network • 7
 Cable Modems and • 6
Hybrid Fiber Coax (HFC) Devices • 2

I
ICMP Ping • 5

L
LANCity Cable TV Modem • 3
lightweight models • 5
 alarms and • 6
 differences from GnSNMPDev • 5
 polling • 6
Logging • 6
Loss of Contact • 6

M
Motorola
 Cable Modem • 5
 CDLP Cable Router • 3

P
Polling • 6

R
RiverDelta BSR 1000 • 3
RiverDelta BSR 64000 • 3
Riverstone SmartSwitch Router • 3
Rollup Threshold Values • 6
Rollup Thresholds • 12

S

Scientific Atlanta Explorer HCT • 3
Scientific Atlanta, set-top box • 5
Severity State • 7
Significance Level • 7
Simple Network Management Protocol (SNMP) • 2
SM-ADC1000 • 3
SM-AMC1000 • 3
SM-ARS1000 • 3
SM-BSC1000 • 3
SM-CIS1008 • 3
SM-DCS1000 • 3
SM-DCSCMN • 3
SM-LCH1000 • 3
SM-MOT1001 • 3
SM-RST1000 • 3
SM-RVD1000 • 3
SM-SFA1000 • 3
SM-TRN1000 • 3
SM-TRN1001 • 3
SNMP Traffic, Minimizing • 5
Southbound Gateway • 7
SpectroSERVER • 5
Suppressed Condition, Cable Modems • 7

T

TeraLink 1000 • 3
Terayon BroadbandEdge2000 • 3
Terayon BW3500 CMTS • 3

U

Up Converter • 2